Buch: Uncertainty PERMEATED - Explainable AI in a Condition Monitoring Framework for Industrial Assets
Uncertainty PERMEATED - Explainable AI in a Condition Monitoring Framework for Industrial Assets
Beiträge zum Stuttgarter Maschinenbau, Band 25
Martin Lukas
Hrsg.: Oliver Riedel, Alexander Verl, Andreas Wortmann; Universität Stuttgart, Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen ISW
2024, 228 S., num., mostly col. illus. and tab., Softcover
Sprache: Englisch
Stuttgart, Univ., Diss., 2023
Fraunhofer Verlag
ISBN 978-3-8396-1990-2

Inhalt
This publication introduces the PERMEATED framework for the diagnosis and condition monitoring of industrial assets. PERMEATED recognizes that the usability of a diagnostic system hinges critically on the trust that a responsible decision-maker, the addressee of health assessments, predictions, uncertainty quantifications and recommendations, has in its capabilities. To foster the generation of trust, PERMEATED prescribes the usage of explainable recommendations. Its usability is demonstrated by implementations as fuzzy recommender system, inherently interpretable machine-learning models and as opaque machine-learning models aided by explainers. PERMEATED's performance is validated on real-world data of various types and series of machine tools as part of a quality control process in the production line, and as support tool for service missions in the field.

Verfügbare Formate

Softcover
EUR 56.00 (* inkl. MwSt.)
Sofort lieferbar


 

* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Lieferung deutschlandweit und nach Österreich versandkostenfrei. Informationen über die Versandkosten ins Ausland finden Sie hier.