Berichte aus dem Produktionstechnischen Zentrum Berlin
Yuwei Pan
Hrsg.: Rainer Stark; Fraunhofer IPK, Berlin; TU Berlin, Institut für Werkzeugmaschinen und Fabrikbetrieb -IWF-
2023, 253 S., num., mostly col. illus. and tab., Softcover
Sprache: Englisch
Berlin, TU, Diss., 2022
Fraunhofer Verlag
ISBN 978-3-8396-1918-6
Inhalt
In today's automotive industry, quickly reacting to engineering changes and providing market-driven products within a short period remains a competence for all Original Equipment Manufacturers (OEMs). Due to the complexity of products, changes to one component can lead to unexpected chain reactions in others. Besides, from creation to the approval of a change request can take weeks or even months without apparent reasons for the delays. To coordinate and control changes, companies established Engineering Change Management (ECM) processes. ECM processes can impact all determinants of competition of products: cost, quality, and time-to-market. Without proper management of Engineering Changes (ECs), negative impacts will happen.
In the scope of this dissertation, a machine-learning based ECM decision support solution is developed which includes two main functions: change impacts prediction and lead time prediction. These functions support engineers to have an overview of change consequences in the early phase of the ECM process. The solution was evaluated based on the data from an automotive company and reached good performance. Therefore it was rated as beneficial to increase the efficiency, effectiveness, and quality of the existing ECM processes.
Verfügbare Formate
Engineering Change Mangement, Artificial Intelligence, Automotive, Change Impact Prediction, Explainable AI,
* Alle Preise verstehen sich inkl. der gesetzlichen MwSt. Lieferung deutschlandweit und nach Österreich versandkostenfrei. Informationen über die Versandkosten ins Ausland finden Sie hier.